Some entomogenous fungi from Wuyishan and Zhangjiajie Nature Reserves
2. Three new species of the genus *Hirsutella*

ZONGQI LIANG¹* YANFENG HAN¹
AIYING LII² & JIANZHONG HUANG²

zqliang472@yahoo.com.cn*
swallow112886@yahoo.com.cn aylh6@yahoo.com.cn
¹ The Institute of Fungus Resources, Guizhou University
Guiyang 550025, China
hjz@fjnu.edu.cn
² The Key Laboratory of Microbiological Engineering
Fujian Normal University, Fuzhou 350007, China

Abstract—Three new entomogenous fungi of the genus *Hirsutella*, *H. zhangjiajiensis*, *H. hunanensis* and *H. erinita*, collected from Wuyishan (Wuyi Mountains) and Zhangjiajie Nature Reserves, are described and illustrated. Some problems of the identification of these fungi are briefly discussed.

Key Words—hyphomycete, taxonomy, morphology

Introduction

Hirsutella Pat. is one of the most abundant and important entomogenous fungi. In 1990, we reviewed the development, taxonomic characteristics of the genus, and proposed a key to 62 taxa. A few doubtful species were discussed briefly (Liang 1990a, b). Seifert & Boulay (2004) suggested that *Hirsutella* consists of 65 species. From our study, we refer 90 species around the world to the genus of *Hirsutella*.

The genus *Hirsutella* plays an important role in the natural control of pest insects (Evans 1974, 1982). *H. gigantea* Petch can infect many larvae and pupae of Lepidoptera in the Kuankuoshui Preserve in Guizhou, China (Liang 1991a). Besides this fungus, *H. rhossiliensis* Minter & B. L. Brady, discovered in the early 1980's, has a stronger lethiferous effect on many plant parasitic nematodes, such as *Ditylenchus dipsaci*, *Meloidogyne incognita*, *Aphelenchoides fragariae* and *Criconemella xenoplax* (Jaffee et al. 1982; Cayrol & Frankowski 1986; Cayrol et al. 1986).

It is known that many species in the genus *Hirsutella* are anamorphs of *Cordyceps* Fr. For example, an anamorph of the famous Chinese traditional medicine *C. sinensis* (Berk.) Sacc. is *H. sinensis* (Liu et al., 1989). Some valuable bioactive compounds have been recently discovered from members of *Hirsutella*. A protein toxic to insects, hirsutellin

*Corresponding author: Zongqi Liang
A (HtA), has been purified from the fungal mite pathogen, H. thompsonii F. E. Fisher (Mazet & Vey, 1995). HtA is considered to be one of many ribonuclease inactivator proteins (RIPs) (Maimala et al. 2002). Vongvanich et al. (2002) found hirsutellide A from a new species of Hirsutella, an interesting antimycobacterial cyclohexadepsipeptide. The synthesis of its key precursor has been studied (Xu et al. 2005).

From 1989 to 2001, Chinese mycologists reported seven new species of Hirsutella (Table 1). The present paper describes three additional new species of Hirsutella and their taxonomic position within the genus.

Table 1. Previously reported species of Hirsutella in China

<table>
<thead>
<tr>
<th>Fungal Name</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. changbeishanensis Z.Q. Liang</td>
<td>Liang 1991b</td>
</tr>
<tr>
<td>H. polycollata Z.Q. Liang</td>
<td>Liang 1991b</td>
</tr>
<tr>
<td>H. yunnanensis Z.Q. Liang & A.Y. Liu</td>
<td>Liu et al., 1993</td>
</tr>
<tr>
<td>H. yunnanensis var. tenuisynnemata Z.Q. Liang & A.Y. Liu</td>
<td>Liang et al., 1997</td>
</tr>
<tr>
<td>H. sinensis X.J. Liu et al.</td>
<td>Liu et al., 1989</td>
</tr>
<tr>
<td>H. longissima C.R. Li et al.</td>
<td>Li et al., 1999</td>
</tr>
<tr>
<td>H. huangshanensis C.R. Li et al.</td>
<td>Li et al., 2005</td>
</tr>
</tbody>
</table>

Materials and Methods

All collected specimens were routinely oven-dried at 40°C to prevent growth of contaminant fungi. For examination by light microscopy, slide preparations were made of a snippet of outer layer tissue from the delaminated synnemata by mounting in lactophenol and cotton blue.

Description of new species

Hirsutella zhangjiajiensis Z.Q. Liang & A.Y. Liu sp. nov. Figs. 1-1, 4

Stromatibus solitariis vel binariis, cylindraceis, simplicibus, 100 × 2 mm. Stipite et capitulo brunneo vel ochraceo. Phialides e ascosporis exorentibus, subulatiae graciles, 30-52 × 2-4.5 μm, vel basi inflata ellipsoida, 4.5 × 3 μm. Conidia lanceolata or leviter curvata, 4.5-7.5 (-10) × 1.5-2.5 μm, mucigeri, lemoniformes, 10 × 4 μm. Holotypus: GZDXIFR98-7131.

Stroma single or 2, cylindrical, 100 × 2 mm, not ramified, leathery. Stipe and fertile part brown to snuff-colored. Conidiogenous structure deriving from the microcyclic conidiation of ascospores from Cordyceps zhangjiajiensis. Phialides slender awl-shaped, 30-52 × 2-4.5 μm or inflated ellipsoidal at basal portion, 4.5 × 3 μm. Conidia lanceolate or the shape of an orange segment, 4.5-7.5(10) × 1.5-2.5 μm, embedded in a mucous sheath, lemoniform, 10 × 4 μm.

Specimen studied: GZDXIFR98-7131 was collected from Zhangjiajie Nature Reserve, Hunan Province by LIANG Zongqi, LIU Aiying et al. in VII 1998.
Figs. 1-1, 4

1. Stipite et capitule
sciles, 30-52 x 2-4.5
ster curvata, 4.5-7.5

DXIFR98-7131.

very. Stipe and fertile
from the microcycle
s slender awl-shaped,
Conidia lanceolate
bedded in a mucous

3. Stipite et capitulo
sciles, 30-52 x 2-4.5
ster curvata, 4.5-7.5

DXIFR98-7131.

very. Stipe and fertile
from the microcycle
s slender awl-shaped,
Conidia lanceolate
bedded in a mucous

Habitat: Pupa of Lepidoptera.
Distribution—Zhangjiajie Nature Reserve: Hunan Province, China.

Hirsutella hunanensis Z.Q. Liang sp. nov.

Synnemata erecta, filiformes, simplices, 5-55 mm longa, 1mm crassa, flexiles vel ligneae,
nigro-brunneae. Phialides 7.5-9 x 4.5-5 μm, e basi inflate cylindrica vel pyriformibus in
cillum 0.5-0.8 μm crassum angustatae, prolifcis. Conidia ellipsoidea vel leviter curvata, 6
x 1.5-2 μm, mucigeri, ellipsoideis, 6 x 4.5 μm. Holotypus: GZDXIFR98-7132

Synnemata filiform, erect, unbranched, 5-55 mm long, 1mm wide, flexible to ligneous,
dark brown, arising from between head and thorax parts of host insect. Phialides solitary
or crowded along synnemata, mostly with cylindrical or pyriform inflated basal portion, 7.5-9 × 4.5-5 μm and with one or 2 slender, thin necks, 7.5-11 × 0.5-0.8 μm. Conidia long ellipsoidal to the shape of an orange segment, 6 × 1.5-2 μm; embedded in a mucous sheath, ellipsoidal, 6 × 4.5 μm. Teleomorph not observed.

Specimen studied: GZDXIFR98-7132. was collected from Zhangjiajie Nature Reserve, Hunan Province by LIANG Zongqi, LIU Aiying et al. in VII 1998.

Habitat: A larva of Lepidoptera.
Distribution: Zhangjiajie Nature Reserve—Hunan Province, China.

Hirsutella crinita Z.Q. Liang sp. nov. Figs. 1-2, 5

Synnemata erecta, filiformes vel cylindrica, simplices, 170 mm longa, 1-1.5 mm crassa, flexiles vel ligneae, nigro-brunneae, caespitosa. Phialides 4.5-6(-10) × 3.5-4.5 μm, e basi inflata globosa vel cylindrica in collum 0.3-0.5 μm crassae angustatae, proliferis. Conidia rara, clavata angusta, 6-9 × 1-1.5 μm, exmuca. Holotypus: GZDXIFR98-5231.

Synnemata slender cylindrical or filiform, unbranched, flexible to ligneous, dark brown, caespitose, arising from the head and thorax parts of host insect, very long (up to 170 mm), slightly swollen in the basal region, 1.0-1.5mm wide, in middle part to upside, 0.5-1.0 mm wide. Phialides somewhat scattered, forming a loose hymenium, arising as lateral cells from the outer hyphae of the synnemata, hemispheric to globose or cylindrical, inflated at basal portion, 4.5-6(-10) × 3.5-4.5 μm, abruptly narrowing into a short thin neck, 1.5-4 μm long and 0.3-0.5 μm wide, always proliferating 2-4, sometimes forming inflated, sterile cylindrical hyphae, 15 × 4.5-5 μm. Conidia infrequent, narrowly anisomerous obclavate, 6-9 × 1-1.5 μm, absence of distinct mucus layer. Teleomorph not observed.

Specimen studied: GZDXIFR98-5231 was collected from Wuyishan, Fujian Province by LIANG Zongqi, LIU Aiying et al. in V 1998.

Habitat: A larva of Lepidoptera. 80-100 × 50-80 mm.
Distribution: Wuyishan, Fujian Province, China.

Discussion

Evans & Samson (1982a,b, 1984) reported several species with phialides of two types (Table 2): A-phialides, which are lateral and compacted in a layer below the head, and B-phialides, which are terminal, compact, and awl-shaped. The new species, *H. zhangjiajiensis*, forms both A- and B-phialides during the ascosporic microcycle conidiation (Fig. 1-1) and produces B-phialides that are solitary and compacted. Species in the genus *Hirsutella* that have awl-shaped phialides more than 40 μm long include *H. aphidis*, *H. stilbelliformis* var. *stilbelliformis*, *H. stilbelliformis* var. *dolichoderi*, *H. sporodochialis*, *H. darwinii*, *H. guignardii*, *H. sinensis*, and *H. zhangjiajiensis*. Among them, species that have both A- and B-phialides and some phialides greater than 40 μm long are *H. sporodochialis*, *H. stilbelliformis* var. *stilbelliformis*, *H. stilbelliformis* var. *dolichoderi* and *H. zhangjiajiensis* (Table 2). Possession of rough-walled hyphae and echinate phialides separates the three former species from *H. zhangjiajiensis*.

In the genus *Hirsutella*, some species that have proliferating phialides are *H. besseyi*, *H. guyana*, *H. versicola*, *H. verticilloides*, and *H. yunnanensis* var. *tenuissynnemata*. All
Table 2. A comparison of three new Hirsutella with related species

<table>
<thead>
<tr>
<th>Species</th>
<th>Shape</th>
<th>Length in μm (max.)</th>
<th>Type</th>
<th>Conidia (μm)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. aphidis</td>
<td>Awl</td>
<td>>40</td>
<td>B</td>
<td>Cymbiform 9x1.5-2.5</td>
<td>Petch 1942</td>
</tr>
<tr>
<td>H. besseyi</td>
<td>Awl or cylindrical</td>
<td>>40</td>
<td>B</td>
<td>Ellipsoid or limoniform 4.1-3.3x2.5-3.8</td>
<td>Minter & Brady 1980</td>
</tr>
<tr>
<td>H. crinita</td>
<td>Base inflated: subglobose</td>
<td>>10</td>
<td>A</td>
<td>Narrowly clavate, 6.9 x 1.5</td>
<td>This work</td>
</tr>
<tr>
<td>H. darwinii</td>
<td>Awl</td>
<td>>40</td>
<td>B</td>
<td>Fusiform 4.5-11.5x1.5-2</td>
<td>Evans & Samson 1982a</td>
</tr>
<tr>
<td>H. guignardii (Maheu)</td>
<td>Awl</td>
<td>>40</td>
<td>B</td>
<td>Ellipsoid or fusiform 7-13x4-6</td>
<td>Samson et al. 1984</td>
</tr>
<tr>
<td>H. gypana</td>
<td>Base inflated: cylindric</td>
<td>>40</td>
<td>A</td>
<td>Ellipsoid or an orange segment 8-12x3-7</td>
<td>Minter & Brady 1980</td>
</tr>
<tr>
<td>H. hunanensis</td>
<td>Base inflated: cylindric to pyriform</td>
<td>>10</td>
<td>A</td>
<td>Ellipsoid or an orange segment 6 x 1.5-2</td>
<td>This work</td>
</tr>
<tr>
<td>H. minnnesotaensis</td>
<td>Base inflated: subglobose</td>
<td>>10</td>
<td>A</td>
<td>Globose 4-6 (in length)</td>
<td>Chen et al. 2000</td>
</tr>
<tr>
<td>H. necatrix</td>
<td>Base inflated: subglobose & awl</td>
<td>>5</td>
<td>A & B</td>
<td>Ovoid or ellipsoid 3-4x2.5-3</td>
<td>Minter et al. 1983</td>
</tr>
<tr>
<td>H. sinensis</td>
<td>Awl</td>
<td>>40</td>
<td>B</td>
<td>Reniform or ellipsoid 5.4-14x3.2-5.4</td>
<td>Liu et al., 1989</td>
</tr>
<tr>
<td>H. sporodochialis</td>
<td>Base inflated: flask-shaped or awl</td>
<td>>80</td>
<td>A to B</td>
<td>Fusiform 10-27x3.5-4</td>
<td>Evans & Samson 1984</td>
</tr>
<tr>
<td>H. stillbelliformis</td>
<td>Base inflated: ellipsoid echinate & awl</td>
<td>>10</td>
<td>A & B</td>
<td>Clavate 7-9x1.5-2.5</td>
<td>Evans & Samson, 1982b</td>
</tr>
<tr>
<td>H. stillbelliformis var. dolichoderi</td>
<td>Base inflated: ellipsoid echinate & awl</td>
<td>>40</td>
<td>A & B</td>
<td>Cylindrical to ovoid 6.5-9.5x3.5-4.5</td>
<td>Evans & Samson, 1982b</td>
</tr>
<tr>
<td>H. versicolor</td>
<td>Base inflated: ellipsoid echinate & awl</td>
<td>>40</td>
<td>A</td>
<td>Fusiform 4-7x1</td>
<td>Minter & Brady 1980</td>
</tr>
<tr>
<td>H. verticillioides</td>
<td>Base inflated: cylindrical</td>
<td>>40</td>
<td>A</td>
<td>Ellipsoid or an orange segment 6-8x3-5</td>
<td>Minter & Brady 1980</td>
</tr>
<tr>
<td>H. yunnanensis var. tenuisynnemata</td>
<td>Base inflated: ellipsoid or subglobose</td>
<td>>10</td>
<td>A</td>
<td>Cylindrical or obclavate 4.5-7.2x1.5-3.8</td>
<td>Liang et al., 1997</td>
</tr>
<tr>
<td>H. zhangjiajiensis</td>
<td>Base inflated: ellipsoid & base inflated: ellipsoid</td>
<td>>40</td>
<td>A & B</td>
<td>Lanceolate or an orange segment 4.5-10x 1.5-2.5</td>
<td>This work</td>
</tr>
</tbody>
</table>
of these species are similar to the new species *H. hunanensis* in fusiform, ellipsoidal and orange conidia. *H. hunanensis* can be distinguished from the above-mentioned species by phialides less than 10 μm length and smaller conidia, around 6 x 1.5-2 μm.

Minter et al. (1983) described a new species, *Necatrix*, that also has phialides with a subglobose or globose swollen base portion. Possession of ovate or ellipsoidal conidia separates this fungus from *C. crinita*, which has narrowly clavate conidia (Table 2). The new species *C. crinita* is also closely related to *M. minnesotensis* and *Y. yunnanensis* var. *teniisynemmata* with similar phialides containing a subglobose basal portion. Globose conidia typically found in *M. minnesotensis* distinguish it from *C. crinita*. *Y. yunnanensis* var. *teniisynemmata* has fusiform or ellipsoidal conidia and can produce yellow caespitose synnemata.

Acknowledgments

This project was supported by the National Natural Science Foundation of China. We are grateful to Drs. Shengjun Chang and Jielin Liu for their comments on the manuscript. And we really appreciate editorial revisions.

References

ellipsoidal and

ditioned species

m.

has phialides

or ellipsoidal

(Table 2). The

H. yunnanensis

basal portion.

H. crinita. H.

can produce

We are grateful

t. And we really

lia of Hirsutella

-412.

species towards

the soybean

Can. J. Bot. 60:

hogenic on ants

complex. Trans.

hogenic on ants

ngi in the tropical

s. Acta Mycologica

fungus Hirsutella

utella anamorph.

Agri. Univ. 26(3):

the anamorph of

Liang ZQ. 1990a. Classification of the genus Hirsutella Pat. I. Advance and the characteristics of

Liang ZQ. 1990b. Classification of the genus Hirsutella Pat. II. Key to the taxa of the genus Hirsutella

Liang ZQ. 1991b. Two new entomopathogenic fungi of the genus Hirsutella. Southwest China

Liang ZQ, Liu AY & Huang JZ. 2002. Some entomogenous fungi from Wuyishan and Zhangjiangie

Liu AY, Liang ZQ, Cao L & Yang HM. 1993. A few new and rare entomogenous fungi in Kunming

area. Southwest China Journal of Agricultural Sciences 6 (1): 87-90.

Liu XI, Guo YL, Yu YX & Zeng W. 1989. Isolation and identification of the anamorphic state of

Maimala S, Tartar A, Boucias D & Chandrapatyab A. 2002. Detection of the toxin Hirsutellin A

from Hirsutella thompsonii. Journal of Invertebrate Pathology 80: 112-126.

Microbiology 141: 1343-1348.

Samson RA, Rombach MC & Seifert K. 1984. Hirsutella guignardii and Stilbella kervelii, two

96(4): 929-934.

Vongvanich N, Kittakoop P, Iaska M, Trakulnaleamsai S, Vimuttipong S, Tanticharoen M &

Thebtaranonth Y. 2002. Hirsutellide A, a new antimycobacterial cyclohexadepsi peptide from

Xu Yi, Duan XM, Li MI, Jiang LQ, Zhao GL, Meng Y & Chen LG. 2005. Synthesis of the key

precursor of Hirsutellide A. Molecules 10: 259-264.